Как определить давление газа?

Физика (7 класс)/Давление

Содержание

Давление. Единицы давления.

По рыхлому снегу человек идёт с большим трудом, глубоко проваливаясь при каждом шаге. Но, надев лыжи, он может идти, почти не проваливаясь в него. Почему? На лыжах или без лыж человек действует на снег с одной и той же силой, равной своему весу. Однако действие этой силы в обоих случаях различно, потому что различна площадь поверхности, на которую давит человек, с лыжами и без лыж. Площадь поверхности лыж почти в 20 раз больше площади подошвы. Поэтому, стоя на лыжах, человек действует на каждый квадратный сантиметр площади поверхности снега с силой, в 20 раз меньшей, чем стоя на снегу без лыж.

Ученик, прикалывая кнопками газету к доске, действует на каждую кнопку с одинаковой силой. Однако кнопка, имеющая более острый конец, легче входит в дерево.

Значит, результат действия силы зависит не только от её модуля, направления и точки приложения, но и от площади той поверхности, к которой она приложена (перпендикулярно которой она действует).

Этот вывод подтверждают физические опыты.

По углам небольшой доски надо вбить гвозди. Сначала гвозди, вбитые в доску, установим на песке остриями вверх и положим на доску гирю. В этом случае шляпки гвоздей лишь незначительно вдавливаются в песок. Затем доску перевернем и поставим гвозди на острие. В этом случае площадь опоры меньше, и под действием той же силы гвозди значительно углубляются в песок.

От того, какая сила действует на каждую единицу площади поверхности, зависит результат действия этой силы.

В рассмотренных примерах силы действовали перпендикулярно поверхности тела. Вес человека был перпендикулярен поверхности снега; сила, действовавшая на кнопку, перпендикулярна поверхности доски.

Величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности, называется давлением.

Чтобы определить давление, надо силу, действующую перпендикулярно поверхности, разделить на площадь поверхности:

давление = сила / площадь.

Обозначим величины, входящие в это выражение: давление – p, сила, действующая на поверхность, – F и площадь поверхности – S.

Тогда получим формулу:

Понятно, что бóльшая по значению сила, действующую на ту же площадь, будет производить большее давление.

За единицу давления принимается такое давление, которое производит сила в 1 Н, действующая на поверхность площадью 1 м 2 перпендикулярно этой поверхности.

Единица давления – ньютон на квадратный метр ( 1 Н / м 2 ). В честь французского ученого Блеза Паскаля она называется паскалем (Па). Таким образом,

Используется также другие единицы давления: гектопаскаль (гПа) и килопаскаль (кПа).

Пример. Рассчитать давление, производимое на пол мальчиком, масса которого 45 кг, а площадь подошв его ботинок, соприкасающихся с полом, равна 300 см 2 .

Запишем условие задачи и решим её.

Дано: m = 45 кг, S = 300 см 2 ; p = ?

В единицах СИ: S = 0,03 м 2

P = 9,8 Н · 45 кг ≈ 450 Н,

p = 450/0,03 Н / м 2 = 15000 Па = 15 кПа

‘Ответ’: p = 15000 Па = 15 кПа

Способы уменьшения и увеличения давления.

Тяжелый гусеничный трактор производит на почву давление равное 40 – 50 кПа, т. е. всего в 2 – 3 раза больше, чем давление мальчика массой 45 кг. Это объясняется тем, что вес трактора распределяется на бóльшую площадь за счёт гусеничной передачи. А мы установили, что чем больше площадь опоры, тем меньше давление, производимое одной и той же силой на эту опору.

В зависимости от того, нужно ли получить малое или большое давление, площадь опоры увеличивается или уменьшается. Например, для того, чтобы грунт мог выдержать давление возводимого здания, увеличивают площадь нижней части фундамента.

Шины грузовых автомобилей и шасси самолетов делают значительно шире, чем легковых. Особенно широкими делают шины у автомобилей, предназначенных для передвижения в пустынях.

Тяжелые машины, как трактор, танк или болотоход, имея большую опорную площадь гусениц, проходят по болотистой местности, по которой не пройдет человек.

С другой стороны, при малой площади поверхности можно небольшой силой произвести большое давление. Например, вдавливая кнопку в доску, мы действуем на нее с силой около 50 Н. Так как площадь острия кнопки примерно 1 мм 2 , то давление, производимое ею, равно:

p = 50 Н/ 0, 000 001 м 2 = 50 000 000 Па = 50 000 кПа.

Для сравнения, это давление в 1000 раз больше давления, производимого гусеничным трактором на почву. Можно найти еще много таких примеров.

Лезвие режущих и острие колющих инструментов (ножей, ножниц, резцов, пил, игл и др.) специально остро оттачивается. Заточенный край острого лезвия имеет маленькую площадь, поэтому при помощи даже малой силы создается большое давление, и таким инструментом легко работать.

Режущие и колющие приспособления встречаются и в живой природе: это зубы, когти, клювы, шипы и др. – все они из твердого материала, гладкие и очень острые.

Давление

Мы уже знаем, что газы, в отличие от твердых тел и жидкостей, заполняют весь сосуд, в котором находятся. Например, стальной баллон для хранения газов, камера автомобильной шины или волейбольный мяч. При этом газ оказывает давление на стенки, дно и крышку баллона, камеры или любого другого тела, в котором он находится. Давление газа обусловлено иными причинами, чем давление твердого тела на опору.

Известно, что молекулы газа беспорядочно движутся. При своем движении они сталкиваются друг с другом, а также со стенками сосуда, в котором находится газ. Молекул в газе много, поэтому и число их ударов очень велико. Например, число ударов молекул воздуха, находящегося в комнате, о поверхность площадью 1 см 2 за 1 с выражается двадцатитрехзначным числом. Хотя сила удара отдельной молекулы мала, но действие всех молекул на стенки сосуда значительно, — оно и создает давление газа.

Итак, давление газа на стенки сосуда (и на помещенное в газ тело) вызывается ударами молекул газа.

Рассмотрим следующий опыт. Под колокол воздушного насоса поместим резиновый шарик. Он содержит небольшое количество воздуха и имеет неправильную форму. Затем насосом откачиваем воздух из-под колокола. Оболочка шарика, вокруг которой воздух становится все более разреженным, постепенно раздувается и принимает форму правильного шара.

Как объяснить этот опыт?

В нашем опыте движущиеся молекулы газа непрерывно ударяют о стенки шарика внутри и снаружи. При откачивании воздуха число молекул в колоколе вокруг оболочки шарика уменьшается. Но внутри шарика их число не изменяется. Поэтому число ударов молекул о внешние стенки оболочки становится меньше, чем число ударов о внутренние стенки. Шарик раздувается до тех пор, пока сила упругости его резиновой оболочки не станет равной силе давления газа. Оболочка шарика принимает форму шара. Это показывает, что газ давит на ее стенки по всем направлениям одинаково. Иначе говоря, число ударов молекул, приходящихся на каждый квадратный сантиметр площади поверхности, по всем направлениям одинаково. Одинаковое давление по всем направлениям характерно для газа и является следствием беспорядочного движения огромного числа молекул.

Попытаемся уменьшить объем газа, но так, чтобы масса его осталась неизменной. Это значит, что в каждом кубическом сантиметре газа молекул станет больше, плотность газа увеличится. Тогда число ударов молекул о стенки увеличится, т. е. возрастет давление газа. Это можно подтвердить опытом.

На рисунке а изображена стеклянная трубка, один конец которой закрыт тонкой резиновой пленкой. В трубку вставлен поршень. При вдвигании поршня объем воздуха в трубке уменьшается, т. е. газ сжимается. Резиновая пленка при этом выгибается наружу, указывая на то, что давление воздуха в трубке увеличилось.

Наоборот, при увеличении объема этой же массы газа, число молекул в каждом кубическом сантиметре уменьшается. От этого уменьшится число ударов о стенки сосуда – давление газа станет меньше. Действительно, при вытягивании поршня из трубки объем воздуха увеличивается, пленка прогибается внутрь сосуда. Это указывает на уменьшение давления воздуха в трубке. Такие же явления наблюдались бы, если бы вместо воздуха в трубке находился бы любой другой газ.

Итак, при уменьшении объема газа его давление увеличивается, а при увеличении объема давление уменьшается при условии, что масса и температура газа остаются неизменными.

А как изменится давление газа, если нагреть его при постоянном объеме? Известно, что скорость движения молекул газа при нагревании увеличивается. Двигаясь быстрее, молекулы будут ударять о стенки сосуда чаще. Кроме того, каждый удар молекулы о стенку будет сильнее. Вследствие этого, стенки сосуда будут испытывать большее давление.

Следовательно, давление газа в закрытом сосуде тем больше, чем выше температура газа, при условии, что масса газа и объем не изменяются.

Из этих опытов можно сделать общий вывод, что давление газа тем больше, чем чаще и сильнее молекулы ударяют о стенки сосуда.

Для хранения и перевозки газов их сильно сжимают. При этом давление их возрастает, газы необходимо заключать в специальные, очень прочные баллоны. В таких баллонах, например, содержат сжатый воздух в подводных лодках, кислород, используемый при сварке металлов. Конечно же, мы должны навсегда запомнить, что газовые баллоны нельзя нагревать, тем более, когда они заполнены газом. Потому что, как мы уже понимаем, может произойти взрыв с очень неприятными последствиями.

Читайте также:  Как выбрать электрический накопительный водонагреватель для квартиры

Закон Паскаля.

В отличие от твердых тел отдельные слои и мелкие частицы жидкости и газа могут свободно перемещаться относительно друг друга по всем направлениям. Достаточно, например, слегка подуть на поверхность воды в стакане, чтобы вызвать движение воды. На реке или озере при малейшем ветерке появляется рябь.

Подвижностью частиц газа и жидкости объясняется, что давление, производимое на них, передается не только в направлении действия силы, а в каждую точку. Рассмотрим это явление подробнее.

На рисунке, а изображен сосуд, в котором содержится газ (или жидкость). Частицы равномерно распределены по всему сосуду. Сосуд закрыт поршнем, который может перемещаться вверх и вниз.

Прилагая некоторую силу, заставим поршень немного переместиться внутрь и сжать газ (жидкость), находящийся непосредственно под ним. Тогда частицы (молекулы) расположатся в этом месте более плотно, чем прежде(рис, б). Благодаря подвижности частицы газа будут перемещаться по всем направлениям. Вследствие этого их расположение опять станет равномерным, но более плотным, чем раньше (рис, в). Поэтому давление газа всюду возрастет. Значит, добавочное давление передается всем частицам газа или жидкости. Так, если давление на газ (жидкость) около самого поршня увеличится на 1 Па, то во всех точках внутри газа или жидкости давление станет больше прежнего на столько же. На 1 Па увеличится давление и на стенки сосуда, и на дно, и на поршень.

Давление, производимое на жидкость или газ, передается на любую точку одинаково во всех направлениях.

Это утверждение называется законом Паскаля.

На основе закона Паскаля легко объяснить следующие опыты.

На рисунке изображен полый шар, имеющий в различных местах небольшие отверстия. К шару присоединена трубка, в которую вставлен поршень. Если набрать воды в шар и вдвинуть в трубку поршень, то вода польется из всех отверстий шара. В этом опыте поршень давит на поверхность воды в трубке. Частицы воды, находящиеся под поршнем, уплотняясь, передают его давление другим слоям, лежащим глубже. Таким образом, давление поршня передается в каждую точку жидкости, заполняющей шар. В результате часть воды выталкивается из шара в виде одинаковых струек, вытекающих из всех отверстий.

Если шар заполнить дымом, то при вдвигании поршня в трубку из всех отверстий шара начнут выходить одинаковые струйки дыма. Это подтверждает, что и газы передают производимое на них давление во все стороны одинаково.

Давление в жидкости и газе.

На жидкости, как и на все тела на Земле, действует сила тяжести. Поэтому, каждый слой жидкости, налитой в сосуд, своим весом создает давление, которое по закону Паскаля передается по всем направлениям. Следовательно, внутри жидкости существует давление. В этом можно убедиться на опыте.

В стеклянную трубку, нижнее отверстие которой закрыто тонкой резиновой пленкой, нальем воду. Под действием веса жидкости дно трубки прогнется.

Опыт показывает, что, чем выше столб воды над резиновой пленкой, тем больше она прогибается. Но всякий раз после того, как резиновое дно прогнулось, вода в трубке приходит в равновесие (останавливается), так как, кроме силы тяжести, на воду действует сила упругости растянутой резиновой пленки.

Определение плотности газа по результатам измерения давления и температуры датчиками Arduino

Введение

Задача измерения параметров газовой смеси широко распространена в промышленности и торговле. Проблема получения достоверной информации при измерении параметров состояния газовой среды и её характеристик с помощью технических средств разрешается принятыми в стандартах методиками выполнения измерений (МВИ), например, при измерении расхода и количества газов с помощью стандартных сужающих устройств [1], или с помощью турбинных, ротационных и вихревых расходомеров и счётчиков [2].

Периодический газовый анализ позволяет установить соответствие между реальной анализируемой смесью и её моделью, по которой в МВИ учитываются физико-химические параметры газа: состав газовой смеси и плотность газа при стандартных условиях.
Также в МВИ учитываются теплофизические характеристики газа: плотность при рабочих условиях (давление и температура газа, при которых выполняют измерение его расхода или объёма), вязкость, фактор и коэффициент сжимаемости.

К измеряемым в реальном режиме времени параметрам состояния газа относятся: давление (перепад давлений), температура, плотность. Для измерения этих параметров применяются соответственно средства измерительной техники: манометры (дифманометры), термометры, плотномеры. Измерение плотности газовой среды допускается измерять прямым или косвенным методами измерения. Результаты как прямых, так и косвенных методов измерения зависят от погрешности средств измерения и методической погрешности. В рабочих условиях, сигналы измерительной информации могут быть подвержены влиянию значительного шума, среднее квадратичное отклонение которого может превышать инструментальную погрешность. В этом случае, актуальной задачей является эффективная фильтрация сигналов измерительной информации.

В данной статье рассматривается методика косвенного измерения плотности газа при рабочих и стандартных условиях c применением фильтра Калмана.

Математическая модель определения плотности газа

Обратимся к классике и вспомним уравнение состояния идеального газа [3]. Имеем:

1. Уравнение Менделеева-Клапейрона:

(1),

— давление газа;

— молярный объём;

R — универсальная газовая постоянная,

;

T — абсолютная температура, T=273.16 К.

2. Два измеряемых параметра:

p – давление газа, Па
t – температура газа, °С.

Известно, что молярный объём зависит от объёма газа V и количества молей газа в этом объёме:

(2)

Также известно, что

(3),

где: m – масса газа, M – молярная масса газа.

Учитывая (2) и (3) перепишем (1) в виде:

(4).

Как известно, плотность вещества

равна:

(5).

Из (4) и (5) выведем уравнение для плотности газа

:

(6)

и введём обозначение параметра

, который зависит от молярной массы газовой смеси:

(7).

Если состав газовой смеси не меняется, то параметр k является константой.
Итак, для расчёта плотности газа необходимо рассчитать молярную массу газовой смеси.

Молярную массу смеси веществ определяем, как среднее арифметическое взвешенное молярной массы массовых долей, входящих в смесь индивидуальных веществ.

Примем известным состав веществ в газовой смеси – в воздухе, который состоит из:

  • 23 % по весу из молекул кислорода
  • 76 % по весу из молекул азота
  • 1 % по весу из атомов аргона

Молярные массы этих веществ воздуха будут соответственно равны:

, г/моль.

Вычисляем молярную массу воздуха, как среднее арифметическое взвешенное:

Теперь, зная значение константы

, мы можем вычислить плотность воздуха по формуле (7) с учетом измеряемых значений

и t:

Приведение плотности газа к нормальным, стандартным условиям

Практически, измерения свойств газов проводят в различных физических условиях, и для обеспечения сопоставления между различными наборами данных должны быть установлены стандартные наборы условий [4].

Стандартные условия для температуры и давления – это установленные стандартом физические условия, с которыми соотносят свойства веществ, зависящие от этих условий.

Различные организации устанавливают свои стандартные условия, например: Международный союз чистой и прикладной химии (IUPAC), установил в области химии определение стандартной температуры и давления (STP): температура 0 °C (273.15 K), абсолютное давление 1 бар ( Па); Национальный институт стандартов и технологий (NIST) устанавливает температуру 20 °C (293,15 K) и абсолютное давление 1 атм (101.325 кПа), и этот стандарт называют нормальной температурой и давлением (NTP); Международная организация по стандартизации (ISO) устанавливает стандартные условия для природного газа (ISO 13443: 1996, подтверждённый в 2013 году): температура 15.00 °С и абсолютное давление 101.325 кПа.

Поэтому, в промышленности и торговле необходимо указывать стандартные условия для температуры и давления, относительно которых и проводить необходимые расчёты.

Плотность воздуха мы рассчитываем по уравнению (8) в рабочих условиях температуры и давления. В соответствии с (6) запишем уравнение для плотности воздуха в стандартных условиях: температура и абсолютное давление :

(9).

Делаем расчёт плотности воздуха, приведенной к стандартным условиям. Разделим уравнение (9) на уравнение (6) и запишем это отношение для :

(10).

Подобным образом, получим уравнение для расчёта плотности воздуха, приведенной к нормальным условиям: температура и абсолютное давление

:

(11).

В уравнениях (10) и (11) используем значения параметров воздуха , T и P из уравнения (8), полученные в рабочих условиях.

Реализация измерительного канала давления и температуры

Для решения многих задач получения информации, в зависимости от их сложности, удобно создавать прототип будущей системы на базе одной из микроконтроллерных платформ типа Arduino, Nucleo, Teensy, и др.

Что может быть проще? Давайте сделаем микроконтроллерную платформу для решения конкретной задачи – создание системы измерения давления и температуры, затрачивая меньше, возможно, средств, и используя все преимущества разработки программного обеспечения в среде Arduino Software (IDE).

Для этого, на аппаратном уровне, нам понадобятся компоненты:

  1. Arduino (Uno, …) – используем как программатор;
  2. микроконтроллер ATmega328P-PU – микроконтроллер будущей платформы;
  3. кварцевый резонатор на 16 МГц и пара керамических конденсаторов на 12-22 пФ каждый (по рекомендациям фирмы-изготовителя);
  4. тактовая кнопка на перезагрузку микроконтроллера и подтягивающий плюс питания к выводу RESET микроконтроллера резистор на 1 кОм;
  5. BMP180 — измерительный преобразователь температуры и давления с интерфейсом I2C;
  6. преобразователь интерфейсов TTL/USB;
  7. расходные материалы – провода, припой, монтажная плата, и др.
Читайте также:  Тележки для уборки

Принципиальная схема платформы, с учетом необходимых интерфейсов: стандартного последовательного интерфейса, I2C, и ничего более, представлена на рис. 1.


Рис. 1 — Принципиальная схема микроконтроллерной платформы для реализации системы измерения давления и температуры

Теперь рассмотрим этапы осуществления нашей задачи.

1. Прежде, нам нужен программатор. Подключаем Arduino (Uno, …) к компьютеру. В среде Arduno Software из меню по пути Файл->Примеры->11. ArdunoISP добираемся до программы программатора ArduinoISP, которую зашиваем в Arduino. Предварительно из меню Инструменты выбираем соответственно Плату, Процессор, Загрузчик, Порт. После Загрузки программы ArduinoISP в плату, наша Arduino превращается в программатор и готова к использованию по назначению. Для этого в среде Arduno Software в меню Инструменты выбираем пункт Программатор: “Arduino as ISP”.

2. Подключаем по интерфейсу SPI ведомый микроконтроллер ATmega328P к ведущему программатору Arduino (Uno, …), рис. 2. Следует заметить, что предварительно биты регистра Low Fuse Byte микроконтроллера ATmega328P были установлены в незапрограммированное состояние. Переходим в среду Arduno Software и из меню Инструменты выбираем пункт Записать Загрузчик. Прошиваем микроконтроллер ATmega328P.


Рис. 2 – Схема подключения микроконтроллера к программатору

3. После успешной прошивки, микроконтроллер ATmega328P готов к установке на разработанную микроконтроллерную платформу (рис. 3), которую программируем также, как и полноценную Arduino (Uno, …). Программа опроса измерительного преобразователя давления и температуры представлена на листинге 1.


Рис. 3 Система измерения давления и температуры

Программа Python для фильтрации по каналам температуры и давления, и получение результатов

Программа Python методики определения плотности газа по результатам измерений давления и температуры представлена на листинге 2. Информация из измерительной системы выводится в реальном режиме времени.

Результаты расчёта представлены листингом и рис. 4, 5, 6.


Рис. 4 – результаты измерения (красный) и фильтрации (синий) давления


Рис. 5 – результаты измерения (красный) и фильтрации (синий) температуры


Рис. 6 – результаты расчёта плотности воздуха, приведенной к стандартным условиям (температура 273.15 К; абсолютное давление 101.325 кПа)

Выводы

Разработана методика определения плотности газа по результатам измерения давления и температуры с применением датчиков Arduino и программных средств Python.

Измерение давления газа

Приборы для измерения давления

Нередко появляется острая необходимость в приборе для измерения давления жидкостей и газов. Рабочие рамки давления требуют непрерывного контроля в каждой трубопроводной системе или емкости, и для этого применяют устройства для измерения давления газа или измерительные установки. Хороший измеритель давления газа будет гарантом постоянной работы оборудования, независимо от используемой системы, где присутствует давление, будь это газовый трубопровод, отопительная схема или кругооборот замкнутого типа.

Факторы, которые стоит учитывать при выборе газового измерительного устройства:

  • Какой принцип работы
  • Вид измеряемого давления
  • Разновидность класса точности
  • Применение и его назначение

Манометры давления

Манометр – это измерительное устройство или установка для измерения дифференциального (например, dp05 датчик дифференциального давления жидкостей газов), абсолютного или избыточного давления. Наиболее распространенные предназначены для измерения только избыточного давления. «Ноль» в таком устройстве находится в соответствии с уровнем давления воздуха. Есть манометры, которые предназначены для универсального измерения, например, фд 09 — измеритель давления газа.

В чем измеряется давление газа

1 Ньютон на метр квадратный равен 1 Паскаль, а 1 атмосфера равна 101325 Паскаль. Такая единица, как «бар» равна 105 Па.

По назначению выделяют следующие виды манометров для измерения давления газа:

  • Общетехнические
  • Эталонные
  • Специальные

Какими приборами измерить давление газа

На данный момент, передовые технологии позволяют использовать разные типы устройств, что показывают значение давления в определенных интервалах:

  • Электронные манометры – приборы высокоточные. Такие устройства могут работать от 0, до предельных температурных значений. Одним из таких устройств является электронный манометр для измерения давления газа ht.
  • Мановакуумметры используется при чрезмерных характеристиках от — до +.
  • Вакуумметры (подразделяются на тягомеры и менее распространенные тягонапоромеры) предназначены для пониженного атмосферного давления в диапазоне от -1 до 0.
  • Манометры, что предназначены для экстремально пониженных значений до +40 кПа.

Установка манометра

Устройство должно быть расположено на открытом месте не выше 3 метров от уровня площадки, чтобы службы контроля смогли распознать его показания. Манометр устанавливают на трубопроводе между запирающей арматурой и емкостью.

Корпус устройства в поперечнике по правилам должен быть больше или равняться 10 см. Для того, чтобы отличить тип используемого манометра, они окрашены в разные тона.

  • Голубой – используется в кислородных устройствах
  • Желтый – для аммиачных устройств
  • Красный – для воспламеняемых газов
  • Черный – для не горящих газов
  • Белый – используется для устройств с ацетиленом.

Установка манометра может производиться несколькими способами:

  • Прямым путем
  • На трехходовой кран
  • С помощью импульсивной трубки

Прибор контроля давления газа buderus

Описание

Прибор контроля давления газа предназначен для отключения котла при падении давления газа в магистрали и является дополнительным оборудованием для котлов Buderus.

Предотвращает аварийное отключение котла и защищает от прогорания газовой горелки при низком давлении газа в магистрали, а именно завершает работу котла. После восстановления нормального давления газа, котел автоматически включается.

Технические характеристики датчика давления котла Будерус

Тип: автоматика для котлов

Страна производитель: Германия

Внешнее исполнение: прямоугольная форма

Внешнее исполнение: цвет черный

Технические характеристики: высота — 0.17 см, глубина — 0.12 см, ширина — 0.22см

Функции и оснащение: возможность программирования нет, индикация давления

Подводя итоги, предлагаю посмотреть несколько видео об измерительных газовых приборах.

Калькулятор комбинированного закона газа

Комбинированный газовый закон — это формула, которая связывает основные параметры идеального газа и позволяет вычислять неизвестные в случаях, если заданы пять остальных величин.

Идеальный газ

Идеальный газ — это математическая модель с определенными допущениями, которая позволяет исследовать свойства газообразных веществ с достаточной точностью. К допущениям, которые используются в модели идеального газа, относятся:

  • пренебрежение размерами молекул;
  • силы молекулярного взаимодействия не учитываются;
  • соударение атомов и молекул абсолютно упруго;
  • газ находится в термодинамическом равновесии.

Благодаря этим допущениям ученые изучили основные свойства газообразных веществ и вывели основные законы, которым подчиняются любые газы. Комбинированный закон объединяет все перечисленные ниже зависимости.

Газовые законы

Любое газообразное вещество характеризуется тремя простыми параметрами: объемом, давлением и температурой. Газ тем и хорош, что он заполняет весь предоставленный объем или может сжиматься до минимальных объемов, иногда переходя в состояние жидкости. Сжимать газ можно двумя способами:

  • при постоянном давлении уменьшить температуру;
  • при постоянной температуре увеличить давление.

Эти две простые формулировки отражают в себе два известных газовых закона: изобару и изотерму. В изобарном процессе изменение температуры приводит к прямо пропорциональному изменению объема. Вспомните жидкий азот: он занимает минимум места, при этом его температура составляет 63,29 К, что соответствует –209 градусам Цельсия. Если температуру азота поднять до 20 градусов Цельсия, то 1 литр жидкого азота превратится в 700 литров газа. Увеличивается температура, увеличивается объем и наоборот. Эти изменения обусловлены тем, что соотношение объема к температуре газа остается статичным.

В изотермическом процессе температура не изменяется и для сжатия газа придется увеличить давление. Это процесс проще для понимания, так как сдавливая газ мы уменьшаем его объем подобно тому, как утрамбовывание грунта или снега позволяет уложить их более плотно и с меньшим объемом. В этом изотермическом процессе изменение давления приводит к обратно пропорциональному изменению объема. Больше давление, меньше объем и наоборот. Такая динамика обусловлена тем, что произведение давления на объем — это всегда постоянная величина.

Если же объем газа не изменяется, то процесс называется изохорным и в этом процессе отображается взаимосвязь давления и температуры. Согласно закону, изменение одного параметра вызывает прямо пропорциональное изменение другого. Это означает, что увеличение давления в сосуде вызывает рост температуры находящегося там газа. Верно и обратное утверждение.

Комбинированный закон

Все перечисленные законы подчиняются общей формулировке: при постоянстве одного параметра, отношение двух других также постоянно. Обобщая эти законы в динамике получаем комбинированный газовый закон, который описывается формулой:

где P1, V1 и T1 — соответственно начальные давление, объем и температура, а P2, V2 и T2 — конечные.

Используя данную формулу легко определить динамику параметров во время нагрева газа или его сжатия.

Наша программа позволяет рассчитать соотношение параметров идеального газа при их изменении. Для использования калькулятора требуется задать пять известных величин, после чего программа определит последнее неизвестное. Рассмотрим небольшой пример.

Пример использования калькулятора

Представим баллон газа объемом 15 л под давлением 120 кПа и при температуре –20 градусов Цельсия. Определим температуру газа, если баллон будет заменен на емкость объемом 10 л и давлением 150 кПа. На первый взгляд у нас есть все параметры, однако в газовых законах температура обязательно указывается в кельвинах, а не градусах. Для перевода температуры в систему Си достаточно прибавить к значению величину 273. Получаем, что температура газа составляет 253 К. Теперь вводим данные в соответствующие ячейки и смотрим на результат: конечная температура теперь равна 210 К или –63 градуса Цельсия. Очевидно, что газ подчинился приведенным выше законам и при уменьшении объема его температура также уменьшилась.

Читайте также:  Как выбрать сейф для квартиры

Заключение

Газовые законы — серьезная тема школьного курса физики, которую более подробно разбирают на первом году обучения в вузах. Комбинированный закон газа прост на первый взгляд, но обилие параметров может запутать школьника, а выведение пропорций и вовсе способно превратить задачу в ад. Для упрощения расчетов используйте наш онлайн-калькулятор, не забывая переводить все заданные параметры в систему СИ.

Давление идеального газа

Определение давления идеального газа

Давление идеального газа – это один из самых важных макроскопических параметров, при помощи которого характеризуют состояние системы в молекулярной физике.

Обозначают давление буквой $p$. Если для известной массы идеального газа определены давление и температура (или объем), то полагают, что состояние термодинамической системы в состоянии равновесия определяется однозначно, так как существующие законы и уравнения молекулярно кинетической теории (МКТ) позволяют все остальные параметры вычислить.

В общем случае давление определяют как:

где $F_n$ проекция силы на нормаль к поверхности S данная сила оказывает воздействие, $Delta S$- площадь поверхности.

Идеальный газ оказывает давление на стенки сосуда, в котором он находится, за счет того, что молекулы этого газа движутся и ударяются о стенки сосуда. Давление идеального газа можно найти, применяя основные положение МКТ. При этом получают, что давление идеального газа равно:

где $m_0$ – масса одной молекулы газа; $n$- концентрация молекул газа; $leftlangle v_rightrangle =sqrtsumlimits^N_>, N $- количество молекул в объеме газа равном $V$. Уравнение (2) называют основным уравнением МКТ. Его можно записать в другом виде, используя среднюю кинетическую энергию молекул ($leftlangle E_krightrangle $):

[p=frac<2><3>nleftlangle E_krightrangle left(3right).]

С таким важным термодинамическим параметром как термодинамическая температура давление связывает формула:

где $k$ – постоянная Больцмана. Уравнение (4) называют уравнением состояния идеального газа.

Если проводить изохорный процесс ($V=const$) с некоторой массой идеального газа, то давление его будет подчинено закону Шарля:

где $p_1$- давление газа имеющего температуру $T_1$.

При проведении изотермического процесса ($T=const$) c постоянной массой некоторого газа поведение давления можно характеризовать, используя уравнение:

В соответствии с законом Дальтона давление смеси газов можно найти как сумму давлений каждого газа:

где $p_i$ – давление каждого газа в отдельности.

Уравнения МКТ, содержащие давление идеального газа

Уравнение Менделеева – Клапейрона (еще один вариант уравнения состояния):

где $frac=nu $ -количество вещества; $m$ – масса газа; $mu $- молярная масса газа; $R$ – универсальная газовая постоянная.textit<>

Определение работы газа в термодинамике:

Соответственно, первое начало термодинамики для идеального газа в дифференциальном виде запишем как:

[delta Q=pdV+frac<2>nu RdTleft(10right),]

где $i$ – число степеней свободы молекулы газа; $delta Q$ – элементарное количество теплоты, которое получает идеальный газ; $frac<2>nu RdT=dU$ – изменение внутренней энергии термодинамической системы.textit<>

Примеры задач с решением

Задание. В идеальном газе проводят процесс, при котором $p=frac,$ где $U$ – внутренняя энергия газа; $A=const$ для определенного газа. Сравните коэффициенты пропорциональности $A$, если в первом случае газ одноатомный, во втором двух атомный. textit<>

Решение. Внутренняя энергия идеального газа для любого процесса равна:

Состояние идеального газа описывает уравнение Менделеева – Клайперона:

[pV=nu RT left(1.2right).]

Подставим правую часть уравнения, которое описывает заданный в условиях задачи процесс ($p=frac$) вместо давления в (1.2), имеем:

Получим из (1.3), что внутренняя энергия вычисляется как:

Сравним выражения для внутренней энергии (1.1) и (1.4), имеем:

Для одноатомного газа $i=3$; для двухатомного газа (без учета колебаний молекул) $i=5$.

Задание. На рис.1 представлены процессы, проводимые с постоянной массой идеального газа, укажите, как изменяются давления в процессах?

Решение. Уравнение процесса можно аналитически описать уравнением:

где $A$ и $B$ положительные постоянные величины.

Состояние газа определим при помощи уравнения Менделеева – Клапейрона:

[pV=nu RT left(2.2right).]

Вместо объема подставим уравнение процесса в (2.2):

Раздели обе части (2.3) на температуру:

Из уравнения (2.4) следует, что при увеличении температуры $frac$ уменьшается, следовательно, знаменатель дроби правой части выражения (2.4) увеличивается, значит, давление уменьшается.

Ответ. Давление в заданном процессе уменьшается.

Парциальное давление и объем

Когда мы имеем дело со смесями газов, важно знать, что они имеют такие характеристики, как парциальный объем и парциальное давление. Для начала определим, что такое смесь идеальных газов.

Смесь идеальных газов – это смесь нескольких газообразных веществ, которые при заданных условиях не будут вступать в определенные химические реакции.

При смене условий (например, повышении температуры, понижении давления) газовая смесь все же может вступать во взаимодействие. Важный параметр любой такой смеси – так называемая весовая концентрация g i i -ного газа-компонента.

  • N – количество газов, из которых состоит смесь;
  • x i i -го газа – молярная концентрация указанного газа в составе смеси;
  • ν i – количество молей i -го газа, присутствующего в смеси.

Понятие парциального давления

Парциальное давление – это особая характеристика, описывающая состояние компонентов смеси идеальных газов. Сформулируем основное определение:

Парциальным называется давление p i , которое могло бы создаваться i -ым газом в смеси при условии отсутствия остальных газов и сохранения исходного объема и температуры.

Формула парциального давления будет выглядеть так:

p i = m i μ i R T V = μ i R T V

Объем смеси здесь обозначен буквой V , ее температура – T .

Следует подчеркнуть, что поскольку средние кинетические энергии молекул смеси равны, то существует и равенство температур всех компонентов газовой смеси, находящейся в состоянии термодинамического равновесия.

Для нахождения давления смеси идеальных газов нужно воспользоваться законом Дальтона в следующей формулировке:

p = ∑ i = 1 N p i = R T V ∑ i = 1 N ν i

Исходя из него, мы можем выразить парциальное давление так:

Понятие парциального объема

У газовой смеси также есть такая характеристика, как парциальный объем.

Парциальный объем V i i -газа в газовой смеси – это такой объем, который мог бы иметь газ при условии отсутствия всех остальных газов и сохранении исходной температуры и объема.

Если речь идет о смеси идеальных газов, то к ней применим закон Амага:

В самом деле, при выражении ν i из формулы выше у нас получится следующее:

ν i = p V i R T ; p = R T V p R T ∑ i = 1 N V i → V = ∑ i = 1 N V i

Для расчета парциального объема газа используется следующая формула:

Нам известно, что параметры, определяющие состояние смеси идеальных газов, будут подчиняться уравнению Менделеева-Клайперона. Формула будет выглядеть так:

p V = m μ s m R T .

Все параметры данного уравнения будут относиться ко всей смеси. Это же уравнение удобнее записать так:

Здесь параметры R s m = R μ s m = R ∑ i = 1 N q i μ i означают удельную газовую постоянную смеси.

Условие: имеется сосуд объемом 1 м 3 , в котором находится 0 , 10 · 10 – 3 к г гелия и 0 , 5 · 10 – 3 к г водорода. Постоянная температура равна 290 К . Вычислите давление смеси и парциальное давление гелия в нем.

Начнем с вычисления количества молей каждого компонента смеси. Для этого можно использовать формулу:

Зная, что молярная масса водорода, согласно таблице Менделеева, составляет μ H 2 = 2 · 10 – 3 к г м о л ь , мы можем найти количество его молей в смеси по формуле:

ν H 2 = m H 2 μ H 2

Считаем, что получится:

ν H 2 = 0 , 5 · 10 – 3 2 · 10 – 3 = 0 , 25 ( м о л ь ) .

Точно такие же расчеты проводим и для гелия, зная, что μ H e = 4 · 10 – 3 к г м о л ь :

Теперь с помощью уравнения Менделеева-Клайперона можно найти парциальное давление каждого компонента:

Сначала рассчитаем давление водорода:

p H 2 V = ν H 2 R T → p H 2 = ν H 2 R T V

Парциальное давление будет равно:

p H 2 = 0 , 25 · 8 , 31 · 290 1 = 602 , 5 ( П а ) .

Теперь то же самое подсчитываем для гелия:

p H e = 0 , 025 · 8 , 31 · 290 1 = 60 , 25 ( П а ) .

Чтобы найти общее давление смеси газов, сложим сумму давлений ее составляющих:

p = p H 2 + p H e

Подставляем полученные ранее значения и находим нужный результат:

p = 602 , 5 + 60 , 25 = 662 , 75 ( П а ) .

Ответ: общее давление смеси составляет 662 , 75 П а , а парциальное давление гелия в смеси равно 60 , 25 П а .

Условие: дана смесь газов, состоящая из 1 к г углекислого газа и 0 , 5 к г O 2 . Если считать их идеальными, какой объем они будут занимать при давлении в 1 а т м ? Температура смеси равна 300 К .

Начнем с вычисления общей массы газовой смеси.

m = m O 2 + m C O 2

Значит, m = 1 + 0 , 5 = 1 , 5 .

Переходим к вычислению массовых компонентов смеси:

g O 2 = 0 , 5 1 , 5 = 0 , 33 ; g C O 2 = 1 1 , 5 = 0 , 67 .

Тогда газовая постоянная смеси будет равна:

R s m = R ∑ i = 1 N g i μ i

R s m = 8 , 31 0 , 33 32 · 10 – 3 + 0 , 67 46 · 10 – 3 = 200 Д ж к г К .

Объем смеси вычисляем с помощью уравнения Менделеева-Клайперона:

V s m = m s m R s m T s m p s m

Вспомнив, что по условию давление равно 1 а т м , что равно 10 5 П а , вычислим объем:

V s m = 1 , 5 · 200 · 300 10 5 = 0 , 9 м 3 .

Ответ: при указанных условиях смесь займет объем, равный 0 , 9 м 3 .

Ссылка на основную публикацию